Biological dispersal refers to both the movement of individuals (, , fungi, bacteria, etc.) from their birth site to their breeding site ('natal dispersal') and the movement from one breeding site to another ('breeding dispersal').
Dispersal is also used to describe the movement of such as and .
Technically, dispersal is defined as any movement that has the potential to lead to gene flow.
The act of dispersal involves three phases: departure, transfer, and settlement. There are different fitness costs and benefits associated with each of these phases.
Through simply moving from one habitat patch to another, the dispersal of an individual has consequences not only for individual fitness, but also for population dynamics, population genetics, and species distribution.
Biological dispersal may be contrasted with geodispersal, which is the mixing of previously isolated populations (or whole biotas) following the erosion of geographic barriers to dispersal or gene flow.
Dispersal can be distinguished from animal migration (typically round-trip seasonal movement), although within population genetics, the terms 'migration' and 'dispersal' are often used interchangeably.
Furthermore, biological dispersal is impacted and limited by different environmental and individual conditions. This leads to a wide range of consequences on the organisms present in the environment and their ability to adapt their dispersal methods to that environment.
In general, there are two basic types:
Due to population density, dispersal may relieve pressure for resources in an ecosystem, and competition for these resources may be a selection factor for dispersal mechanisms. Dispersal of organisms is a critical process for understanding both geographic isolation in evolution through gene flow and the broad patterns of current geographic distributions (biogeography).
A distinction is often made between natal dispersal where an individual (often a juvenile) moves away from the place it was born, and breeding dispersal where an individual (often an adult) moves away from one breeding location to breed elsewhere.
There are a number of benefits to dispersal such as locating new resources, escaping unfavorable conditions, avoiding competing with , and avoiding breeding with closely related individuals which could lead to inbreeding depression.
There are also a number of costs associated with dispersal, which can be thought of in terms of four main currencies: energy, risk, time, and opportunity.
Energetic costs include the extra energy required to move as well as energetic investment in movement machinery (e.g. wings). Risks include increased injury and mortality during dispersal and the possibility of settling in an unfavorable environment.
Time spent dispersing is time that often cannot be spent on other activities, such as growth and reproduction.
Finally, dispersal can also lead to outbreeding depression if an individual is better adapted to its natal environment than the one it ends up in. In social animals (such as many birds and mammals) a dispersing individual must find and join a new group, which can lead to loss of social rank.
In contrast, urban environments can also provide limitations for certain dispersal strategies. Human influence through urbanization greatly affects the layout of landscapes, which leads to the limitation of dispersal strategies for many organisms. These changes have largely been exhibited through pollinator-flowering plant relationships. As the pollinator's optimal range of survival is limited, it leads to a limited supply of pollination sites. Subsequently, this leads to less gene flow between distantly separated populations, in turn decreasing the genetic diversity of each of the areas. Likewise, urbanization has been shown to impact the gene flow of distinctly different species (ex. mice and bats) in similar ways. While these two species may have different and living strategies, urbanization limits the dispersal strategies of both species. This leads to genetic isolation of both populations, resulting in limited gene flow. While the urbanization did have a greater effect on mice dispersal, it also led to a slight increase in inbreeding among bat populations.
As the climate changes, prey and predators have to adapt to survive. This poses a problem for many animals, for example, the Southern Rockhopper Penguins. These penguins are able to live and thrive in a variety of climates due to the penguins' phenotypic plasticity. However, they are predicted to respond by dispersal, not adaptation this time. This is explained due to their long life spans and slow microevolution. Penguins in the subantarctic have very different foraging behavior from those of subtropical waters; it would be very hard to survive by keeping up with the fast-changing climate because these behaviors took years to shape.
On the other hand, human activities may also expand the dispersal range of a species by providing new dispersal methods (e.g., ballast water from ships). Many such dispersed species become invasive species, like or stinkbugs, but some species also have a slightly positive effect to human settlers like honeybees and .
The formation of barriers to dispersal or gene flow between adjacent areas can isolate populations on either side of the emerging divide. The geographic separation and subsequent genetic isolation of portions of an ancestral population can result in allopatric speciation.
All of the marine and aquatic whose lives are spent fixed to the bottom (more or less; anemones are capable of getting up and moving to a new location if conditions warrant) produce dispersal units. These may be specialized "buds", or motile sexual reproduction products, or even a sort of alteration of generations as in certain cnidaria.
Corals provide a good example of how sedentary species achieve dispersion. Broadcast spawning corals reproduce by releasing sperm and eggs directly into the water. These release events are coordinated by the lunar phase in certain warm months, such that all corals of one or many species on a given reef will be released on the same single or several consecutive nights. The released eggs are fertilized, and the resulting zygote develops quickly into a multicellular planula. This motile stage then attempts to find a suitable substratum for settlement. Most are unsuccessful and die or are fed upon by zooplankton and bottom-dwelling predators such as anemones and other corals. However, untold millions are produced, and a few do succeed in locating spots of bare limestone, where they settle and transform by growth into a polyp. All things being favorable, the single polyp grows into a coral head by budding off new polyps to form a colony.
Dispersal rate (also called migration rate in the population genetics literature) or probability describes the probability that any individual leaves an area or, equivalently, the expected proportion of individuals to leave an area.
The dispersal distance is usually described by a dispersal kernel which gives the probability distribution of the distance traveled by any individual. A number of different functions are used for dispersal kernels in theoretical models of dispersal including the negative exponential distribution, extended negative exponential distribution, normal distribution, exponential power distribution, inverse power distribution, and the two-sided power distribution. The inverse power distribution and distributions with 'fat tails' representing long-distance dispersal events (called leptokurtic distributions) are thought to best match empirical dispersal data.
Many populations have patchy spatial distributions where separate yet interacting sub-populations occupy discrete habitat patches (see metapopulations). Dispersing individuals move between different sub-populations, which increases the overall connectivity of the metapopulation and can lower the risk of stochastic extinction. If a sub-population goes extinct by chance, it is more likely to be recolonized if the dispersal rate is high. Increased connectivity can also decrease the degree of local adaptation.
Human interference with the environment has been seen to have an effect on dispersal. Some of these occurrences have been accidents, like in the case of zebra mussels, which are indigenous to Southeast Russia. A ship had accidentally released them into the North American Great Lakes and they became a major nuisance in the area, as they began to clog water treatment and power plants. Another case of this was seen in Chinese bighead and silver carp, which were brought in with the purpose of algae control in many catfish ponds across the U.S. Unfortunately, some had managed to escape into the neighboring rivers of Mississippi, Missouri, Illinois, and Ohio, eventually causing a negative impact for the surrounding ecosystems. However, human-created habitats such as urban environments have allowed certain migrated species to become urbanophiles or Synanthrope.
Dispersal has caused changes to many species on a genetic level. A positive correlation has been seen for differentiation and diversification of certain species of spiders in the Canary Islands. These spiders were residing in archipelagos and islands. Dispersion was identified as a key factor in the rate of both occurrences.
Long-distance dispersals are observed when seeds are carried through human vectors. A study was conducted to test the effects of human-mediated dispersal of seeds over long distances in two species of Brassica in England. The main methods of dispersal compared with movement by wind versus movement by attachment to outerwear. It was concluded that shoes were able to transport seeds to further distances than what would be achievable through wind alone. It was noted that some seeds were able to stay on the shoes for long periods of time, about 8 hours of walking, but evenly came off. Due to this, the seeds were able to travel far distances and settle into new areas, where they were previously not inhabiting. However, it is also important that the seeds land in places where they are able to stick and grow. Specific shoe size did not seem to have an effect on prevalence.
Genome wide SNP dataset and species distribution modelling are examples of computational methods used to examine different dispersal modes. A genome-wide SNP dataset can be used to determine the genomic and demographic history within the range of collection or observation. Species distribution models are used when scientists wish to determine which region is best suited for the species under observation. Methods such as these are used to understand the criteria the environment provides when migration and settlement occurs such as the cases in biological invasion.
Human-aided dispersal, an example of an anthropogenic effect, can contribute to biological dispersal ranges and variations.
Informed dispersal is a way to observe the cues of biological dispersal suggesting the reasoning behind the placement. This concept implies that the movement between species also involve information transfer. Methods such as GPS location are used to monitor the social cues and mobility of species regarding habitat selection. GPS radio-collars can be used when collecting data on social animals such a meerkats. Consensus data such as detailed trip records and point of interest (POI) data can be used to predict the movement of humans from rural to urban areas are examples of informed dispersal.
Direct tracking or visual tracking allows scientists to monitor the movement of seed dispersal by color coding. Scientists and observers can track the migration of individuals through the landscape. The pattern of transportation can then be visualized to reflect the range in which the organism expands.
Dispersal range
Urban Environments and Dispersal Range
Environmental constraints
Dispersal barriers
Dispersal mechanisms
Plant dispersal mechanisms
Animal dispersal mechanisms
Non-motile animals
Motile animals
Dispersal by dormant stages
Quantifying dispersal
Consequences of dispersal
Human-Mediated Dispersal
Dispersal observation methods
See also
Further reading
External links
|
|